	Higher Revision – Unit 1 A/B Test			
1.	Solve the equation $\log_4(5+x) - \log_4(x) = 2$, $x < 3$			
2.	Find the coordinates of the point where the curve with equation $y = \log_3(x-1)$ meets the straight line $y = 2$			
3.	A cup of tea cools according to the law $T_t = T_0 e^{-kt}$, where T_0 is the initial temperature and T_t is the temperature after t minutes. All temperatures are in °C (a) A particular mug of tea cools from boiling point (100°C) to 75°C in a quarter of an hour. Calculate the value of k			
	next quarter of an hour			
4.	Evaluate $2 - \log_5\left(\frac{1}{25}\right)$	2		
5.	Two variables x and y are connected by the law $y = ba^x$. The graph of log ₉ y against x is a straight line with a y-intercept of 1 passing through the point (2, 5) as shown in the diagram. Find the values of b and a	4		
6.	The diagram shows two right-angled triangles with angle c and d marked as shown			
	(a) Find the exact value of $\sin (c + d)$	4		
	 (b) (i) Find the exact value of sin 2c (ii) Show that cos 2d has the same exact value 	4		

7.	A curve has the equation $y = 3\sin x + \cos x$			
	(a) Express $y = 3\sin x + \cos x$ in the form $y = k\sin (x - a)^{\circ}$ where $k > 0$ and $0 \le x \le 360^{\circ}$			
	(b) State the maximum value of the curve $y = \sin x + \cos x$, and the value of x at which this maximum occurs.			
8.	(a) Find an equivalent expression for $\cos\left(x - \frac{\pi}{6}\right)$			
	(b) Hence, or otherwise, determine the exact value of $\cos \frac{\pi}{12}$	3		
9.	A function <i>f</i> is given by $f(x) = \sqrt{9-2x}$			
	(a) State a suitable domain for this function			
	(b) Find $f^{I}(x)$, the inverse function to $f(x)$			
10.	. Two functions are given as $f(x) = x^2 - 1$ and $g(x) = 2 - x$			
	(a) Find the composite function $f(g(x))$, give you answer in the form $ax^2 + bx + c$,			
	(b) Solve $f(g(x)) = 8$	2		
11.	The diagram below shows part of the graph of a function whose equation is of the form $y = a \sin(bx^\circ) + c$ $y = a \sin(bx^\circ) + c$ $y = a \sin(bx^\circ) + c$ Write down the values of <i>a</i> , <i>b</i> and <i>c</i> $y = a \sin(bx^\circ) + c$	3		

answers					
1.	$\log_{4}\left(\frac{(5+x)}{(x)}\right) = 2, \qquad \frac{(5+x)}{(x)} = 4^{2}, 5+x=16x, \qquad x=\frac{1}{3}$				
	Example 1.18 on page 13, Question 1 on page 13				
2.	$2 = \log_3(x-1),$ $3^2 = x-1,$ $x = 10$ (10,2)				
	Example 1.13 on page 11 Question 2 on page 12				
3.	(a) $75 = 100e^{-kt} \rightarrow \ln(0.75) = -kt \rightarrow k = 0.0192$				
	(b) $T_{15} = 75e^{-0.0192 \times 15}$ or $T_{30} = 100e^{-0.0192 \times 30}$, temp falls by 18.75°C				
	Example 1.23 on page 16 Questions 3 – 5 on page 17				
4.	$2 - \log_5\left(\frac{1}{25}\right) = 2 - \log_5\left(5^{-2}\right) = 2 - {}^{-2}\log_5 5 = 4$				
	Example 1.8 and 1.9 on page 9 Question 3 on page 9				
5.	Take log_9 for both sides of $y = ba^x$ Find the equation of the straight line $log_9 y = log_9 ba^x$ $log_9 y = 2x + 1$ $log_9 y = log_9 b + log_9 a^x$ $log_9 y = 2x + 1$				
	$\log_9 y = \log_9 b + x \log_9 a$ Compare with				
	$\log_9 y = x \log_9 a + \log_9 b$ $\log_9 y = x \log_9 a + \log_9 b$				
	$x \log_9 a = 2x, \qquad \log_9 a = 2, \qquad a = 9^{2}, \qquad a = 81$ $\log_9 b = 1, \qquad b = 9^1, \qquad b = 9^1$				
	Therefore the original exponential function is $y = 9 \times 81^x$				
	Example 1.26 on page 20 Question 2 on page 21				

6.
$$\sin c = \frac{1}{\sqrt{5}} \quad \cos c = \frac{2}{\sqrt{5}}, \quad \sin d = \frac{1}{\sqrt{10}} \quad \cos d = \frac{3}{\sqrt{10}}$$
(a)
$$\sin (c + d) = \sin c \cos d + \cos c \sin d$$

$$= \frac{1}{\sqrt{5}} \times \frac{3}{\sqrt{10}} + \frac{2}{\sqrt{5}} \times \frac{1}{\sqrt{10}} = \frac{5}{\sqrt{50}} = \frac{1}{\sqrt{2}}$$
(b)
$$\sin 2c = 2\sin c \csc = 2 \times \frac{1}{\sqrt{5}} \times \frac{2}{\sqrt{5}} = \frac{4}{5}$$

$$\cos 2d = 2\cos^2 d \cdot 1 = 2 \times \left(\frac{3}{\sqrt{10}}\right)^2 - 1 = \frac{8}{10} = \frac{4}{5}$$
Example 2.16 on page 36 Questions 9 and 10 on page 37
7. A curve has the equation $y = 3\sin x + \cos x$
(a) $k \sin(x-a) = k \sin x \cos a - k \cos x \sin a$
 $3\sin x + \cos x$

$$-k\sin a = 1, \quad k = \sqrt{10},$$
 $k\cos a = 3 \quad \tan a = \frac{-1}{3}, \quad a = 341.6^{\circ} \quad y = \sqrt{10} \sin (x - 341.6)^{\circ}$
(b) The maximum value of $y = 3\sin x + \cos x$ is $\sqrt{10}$
when $x = 90^\circ + 341.6^\circ = 71.6^\circ$
Example 2.32 on page 50 Questions 3 and 4 on page 52
Example 3.25 on page 76 Question 7 on page 77
8. (a) $\cos\left(x - \frac{\pi}{6}\right) = \cos x\cos\frac{\pi}{6} + \sin x\sin\frac{\pi}{6} = \frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x$
(b) $\cos\frac{\pi}{12} = \cos\left(\frac{\pi}{4} - \frac{\pi}{6}\right) = -\cos\frac{\pi}{4}\cos\frac{\pi}{6} + \sin\frac{\pi}{4}\sin\frac{\pi}{6} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2} = \frac{\sqrt{3}}{2\sqrt{2}}$
Example 2.11 on page 34 Question1c and f on page 36

9.	$f(x) = \sqrt{9 - 2x}$ (a) 9 - 1	2r > 0 $r < 9/2$ (b)	$f^{l}(x) = \frac{9 - x^{2}}{2}$			
	$J(x) = \sqrt{y} 2x \qquad (a) \qquad y = 1$	$2x > 0, x < y/2 \qquad (0)$	$\int (x)^{-} 2$			
	Example 4.2 on page 84 Exam	ple 4.6 on page 89	Question 1 on page 89			
10.	Two functions are given as $f(x) = x^2 - 1$ and $g(x) = 2 - x$					
	(a) $f(g(x) = f(2 - x)) = $ =	$(2-x)^2 - 1 4 - 4x + x^2 - 1 x^2 - 4x + 3,$				
	(b) $x^2 - 4x + 3 = 8$, $x^2 - 4x - 5 = 0$, $(x - 5)(x + 1) = 0$, $x = 5$ or $x = -1$					
	Example 4.3 on page 86 Question 6 and 7 on page 88					
11.	$a = 2, b = 3, c = -1$ $y = 2\sin(3x) - 1$					
	Example 3.24 on page 75 Questions 4 and 5 on page 77					
12.	$TP (0,4) \rightarrow (2,-4) TP (4)$	$(3,-3) \to (5,3)$	▲			
	Example 3.2 on page 56 Q	x	(5,3)			
13.	The <i>x</i> -intercept (1,0) has move	d 3 places to the right so	<i>b</i> = 3			
	Given that $y = \log_a (x - 3)$ passes through the point (5,1)					
	$1 = \log_a (5-3)$ $1 = \log_a (2)$	so <i>a</i> = 2	$y = \log_2\left(x - 3\right)$			
	Example 3.19 on page 71	Question 2 on page 73				
14.	(a) $3(x+2)^2 + 1$ (b) The range of this function is $y \ge 1$					
	Example 3.4 on page 59	Question 2 on page 61				
	Example 4.1 on page 84	Question 1 on page 85				

15.
(a)
$$u = \begin{pmatrix} -3\\ 0\\ 4 \end{pmatrix}$$
, $|u| = \sqrt{(-3)^2 + 0^2 + 4^2} = 5$
(b) unit vector parallel to u is $\frac{1}{5} \begin{pmatrix} -3\\ 0\\ 4 \end{pmatrix}$ or $\begin{pmatrix} -3/5\\ 0\\ 4/5 \end{pmatrix}$
Example 5.3 on page 96 Question 10 on page 98
16.
 $p = a + \frac{4}{5} a \dot{N} = \begin{pmatrix} -5\\ 6\\ -5 \end{pmatrix} + \frac{4}{5} \begin{pmatrix} 15\\ -10\\ 5 \end{pmatrix} = \begin{pmatrix} 7\\ -2\\ -1 \end{pmatrix}$, P is the point (7, -2, -1)
Example 5.10 on page 103 Questions 1 and 2 on page 104
17.
(a) G (0,2,2) (b) $p = \begin{pmatrix} 0\\ 1\\ 1 \end{pmatrix}$ and $q \begin{pmatrix} 1\\ 2\\ 1 \end{pmatrix}$
(c) $\cos POQ = \frac{p \cdot q}{|p||q|} = \frac{0 \times 1 + 1 \times 2 + 1 \times 1}{\sqrt{2} \times \sqrt{6}} = \frac{3}{\sqrt{12}} = \frac{\sqrt{3}}{2}$, angle POQ is 30°
Example 6.5 and 6.6 on page 121 Questions 4 on page 123
18. Given that vectors a, b and c are defined as follows
 $a = \begin{pmatrix} 2\\ 0\\ -1 \end{pmatrix}$, $b = \begin{pmatrix} 1\\ 2\\ 1 \end{pmatrix}$ and $c = \begin{pmatrix} 0\\ -1\\ 1 \end{pmatrix}$
 $a \cdot b = 2 \times 1 + 0 \times 2 + -1 \times 1 = 1$ $a \cdot c = 1 \times 0 + 2 \times -1 + 1 \times 1 = -1$
 $a \cdot b + a \cdot c = 0$
since $a \cdot b + a \cdot c = a \cdot (b + c)$,
hence $a \cdot (b + c) = 0$ and so a is perpendicular to $b + c$
Example 6.4 on page 119 and Example 6.9 on page 126
Question 7 on page 120, Question 1 in page 127